Saturday, August 22, 2020

Free Essays on GM to Sue California

The Wall Street Journal Date: Monday February 26, 2001 Article Title: GM’s Move to Sue California Over guidelines On Emmissions Leaves Auto Makers Split. On Friday February 23, General Motors Corp. recorded a claim in California Superior Court against the state Air Resource Boards that by 2003 all vehicles and light trucks sold or rented in California by enormous manufacturer’s produce no contamination. Passage Motor Co. also, Daimler Chrysler AG chose not to embrace GM’s lawful endeavors. GM says that the new norms and are both monetarily and innovatively hard to meet. Air hogs authorities felt that they were not being preposterous, and that GM ought to depend on their designers as opposed to their legal counselors. This suit can have enormous effect in light of the fact that different states have just consented to a similar discharge controls as CA. Portage gave an explanation that it was set up to meet the prerequisites and that they are traveled toward this path in any case by promising to attempt to improve the gas mileage on the entirety of their game utility vehicles by %25 more than 5 years. Toyota Motors Corp., said they are not anticipating taking any piece of this even idea they have been contending similar issues. GM says that they have been making a decent attempt to tidy up the air in CA.. They presented their battery fueled vehicle their five years prior, and have provided electric force travel transports too. GM says that deals of electric vehicles has been little to such an extent that they may need to turn to selling golf truck like vehicles. They state they are not being given sufficient opportunity to meet the standards.... Free Essays on GM to Sue California Free Essays on GM to Sue California The Wall Street Journal Date: Monday February 26, 2001 Article Title: GM’s Move to Sue California Over principles On Emmissions Leaves Auto Makers Split. On Friday February 23, General Motors Corp. recorded a claim in California Superior Court against the state Air Resource Boards that by 2003 all vehicles and light trucks sold or rented in California by huge manufacturer’s emanate no contamination. Passage Motor Co. what's more, Daimler Chrysler AG chose not to underwrite GM’s legitimate endeavors. GM says that the new principles and are both financially and mechanically hard to meet. Air hogs authorities felt that they were not being preposterous, and that GM ought to depend on their specialists as opposed to their legal counselors. This suit can have enormous effect on the grounds that different states have just consented to a similar emanation governs as CA. Passage gave an explanation that it was set up to meet the necessities and that they are traveled toward this path in any case by promising to attempt to improve the gas mileage on the entirety of their game utility vehicles by %25 more than 5 years. Toyota Motor s Corp., said they are not anticipating taking any piece of this even idea they have been contending similar issues. GM says that they have been making a decent attempt to tidy up the air in CA.. They presented their battery fueled vehicle their five years back, and have provided electric force travel transports also. GM says that deals of electric vehicles has been little to the point that they may need to depend on selling golf truck like vehicles. They state they are not being given sufficient opportunity to meet the standards....

Friday, August 21, 2020

Types Of Grants And Scholarships Essay Example for Free

Kinds Of Grants And Scholarships Essay The Pell Grant Program fundamentally gives need-based awards to understudies having a place with low-pay families.â This award is essentially for undergrad and certain postgraduate understudies who don't have satisfactory funds and access to advanced education programs.â The present foundations that partake in this program estimated about 5,400.â The awards by and large spread costs, for example, remittances and essential training costs. The award sum is dictated by various factors, for example, the commitment from the family (EFC), the expense of essential instruction, regardless of whether the understudy is full-time or low maintenance and the whole participation during the school year.  A qualified understudy may not get more than one Pell Grant from in excess of a solitary scholarly organization at a time.â According to the FSA handbook, direct awards might be granted with the guide of partaking schools to understudies who fit the money related need capabilities and who have not gotten their bachelor’s degrees. The Academic Competitiveness Grant (ACG) is a generally new program that was allowed during the 2006-2007 scholarly year.â The primary motivation behind this award is to energize understudies in the United States to join up with additionally testing secondary school courses and furthermore to in the long run seek after school degrees.â This award is granted to understudies who are first-year college understudies who had the option to move on from secondary school in 2006, and to second-year understudies who graduated in January 1, 2005 from their secondary school. This can be granted to an understudy well beyond the Pell award grant that a meriting understudy receives.â There is presently over US $4.5 billion that has been reserved for this program throughout the following five (5) years and this will proceed until the 2010-2011 scholarly calendars.â In request to be able to get this award, candidates must be full-time understudies (dissimilar to the Pell Grant) and should be United States residents. Works Cited: ACG Grant Information from http://www.acggrant.com/keep going got to on March 20, 2008 Government Pell Grant Program from http://www.ed.gov/programs/fpg/index.html keep going got to on March 20, 2008

Thursday, June 4, 2020

Use of iPads for Improving Learners Performance in Math - 2750 Words

Use of iPads for Improving Learners' Performance in Math (Term Paper Sample) Content: NameInstructorSubjectDateImproving Learners Performance in MathMath is one of the subjects that many students find challenging, and often, fail or score low grades. Part of the reason could be due to the misconception that some students are naturally good in math, while others, especially girls, are poor in math and science subjects in general. In addition, it appears, as I gathered from my observation at the school I visited, that the current approaches to teaching math are not helping slow learners to improve, while they are also delaying the advancement of fast learners. In this essay, I explore the problems that students face in learning math, and propose possible ways of addressing these obstacles. The paper argues that there is a need for a change in teaching methodologies to better equip learners with the skills they require to excel in math. To improve math skills in learners, it is necessary to engage students in classroom activities, discourage the use of el ectronic devices like calculators and iPads, which provide quick answers with little input from the learners, as well as to have separate classrooms for fast and slow learners. The observations I made in a private school during math lessons indicate that the biggest challenge to math learning is not the ability of learners, but the approaches that teachers employ in teaching math. In the particular school I have been visiting, I observed that each student has an iPad, which they use to do calculations and get quick answers. The problem with using technology in subjects like math is that it makes things too easy for the student, to the extent that they apply little critical thinking schools. Solving math problems require learners to apply critical thinking skills in diving, adding, subtracting, as well as applying formulae to get answers. The iPad makes these skills unnecessary because it can do the hard work of adding, dividing and subtracting numbers. All that the student does is k ey-in the numbers and press the function that he wants the iPad to do. The argument is often fronted that using technology, such as having iPads in classrooms, is one way of making learners like the subject because they find it interesting to use iPads to manipulate numbers. Hollylynne Lee and Karen Hollebrands of North Carolina State University say that the major reason for integrating technology into the teaching of math is to encourage learners participation in classroom activities (Lee and Hollebrands 2008). Given that students have traditionally disliked math because they consider it a difficult subject, it is reasonable to argue that technology plays a positive role by encouraging learners to like the subject. The big question, however, is at what cost is it justifiable to arouse learners interest in a subject they consider difficult? Is it worth compromising the learners development of critical thinking skills for the sake of making them like a subject, in this case math? Res ponding to these questions will help in addressing the real problems that students face in learning math. The role of technology should not be allowing students to get accurate answers quickly, as is the case with the use of calculators in math, but to promote the development of computational and critical thinking skills. Merrilyn Goos, Director of the Teaching and Educational Development Institute at the University of Queensland points out that the use of technology such as iPads and calculators to teach math has the possibility of fundamentally changing students mathematical practices and even the nature of the mathematical knowledge they learn at school (Goos 67). This may be the case in elementary education whereby the calculator or iPad becomes a substitute for the students brain in juggling numbers. Thus, while it makes it easier for learners to get accurate answers in addition to increasing their interest in a difficulty subject, technology presents the risk of slowing the d evelopment of critical thinking and computational skills in learners. This is because too much dependence on technology to do the difficult stuff of calculating numbers slows the learners thinking ability and reduces the level of engagement in problem solving. In math, the level of learner engagement is determined by their active involvement in finding the answer. Calculators and iPads reduces engagement level by doing the computation and calculation processes, and churning out the answer after pressing the = symbol. The student has zero input, for example, in applying the concept of decimals when dividing 10 by 3. All the student does is type the problem, press the answer button, and hurrah, the iPad or calculator does its magic to get 0.33333. It is such concerns, the risk of letting technology to get the answers, that informs this papers argument that the use of iPads could potentially hinder learners understanding of mathematical concepts. Most importantly, using the aid of iPad s to solve problems denies students the opportunity to develop critical skills like reasoning, abstraction, pattern and relationship recognition, and conceptual thinking (Wills 56). The end result is that the iPads hinders their human skills and makes them helpless when they are asked to solve problems without the help of electronic devices. It would be more appropriate, therefore, to encourage students to engage their minds in computing math problems as a means of developing competence. The second observation I made is that there was little group work as each student worked alone on assignments. At no time did the teacher ask the students to come together and discuss a given problem. In addition to helping learners develop teamwork skills, working in groups in important in encouraging sharing of ideas and helping learners deepen their understanding of a concept through the process of explaining it to others. Learners increase their knowledge when they try to teach fellow others. Th is is because they get to answer questions to clarify obscure points as well as gain the input of other students. While working individually enhances the learners ability to tackle problems without outside assistance, group work can be useful in motivating the learners since they take on a problem as a group. Writing for the National Council of Teachers of Mathematics, Katie Gibbons and Sarah Bush state that middle school students being social in nature, teachers can use group work to promote cooperative learning. Group work encourages learners not only to share ideas, but to become more creative by attempting to solve problems without the teachers direct input. The independence that earners show hen working in groups allows them to brainstorm, combine ideas and correct each other to arrive at a solution. This interactive learning process helps students to learn from each other, while the slow pace of working in groups ensures that everyone learns. The third issue that I observed is the inability of slow learners to keep up with the teachers pace. This is understandable partly because of the time constraints that require a teacher to complete a lesson within a given time. However, it has a detrimental effect on slow learners who gain little at the end of the lesson. A worrying trend that I noticed is that the teacher focused on the brighter students during the question-answer sessions. It struck me that slow learners were spectators in the whole session as the teacher directed questions at certain students, all who answered correctly. The effect of this approach is that it discourages slow learners from being actively involved in the learning process. At the same time, directing all the questions at the brighter students sends a message to slow learners that they are actually dumb and the teacher does not expect them to get the answers correct. Teacher can help slow learners, as well as encourage them to be active learners, by using the question-answer sessio ns to address the problems of slow learners. The teacher can ask the learners what they did not understand and assist them by providing more examples and assisting individual students with their problems (Cooney, Davis and Henderson 335). Although it is recommended that the teacher should create time for remedial lessons to repeat difficult topics or help slow learners to understand the topic concepts, classroom activities like short assignments and the question-answer sessions, provide an opportunity for the teacher to build on what the student has already learned during the lesson before they can forget it. Thus, teachers should always aim to help slow learners during classroom learning activities as the learners are still on tune with the topic, and the teacher can make a big difference by clarifying a few points. Instead of giving students homework to do at home, the teacher gave class work assignments which the students completed while at school. This approach might be due to t he possibility that students might not benefit much from home work as a result of being assisted by parents or elder siblings. This presents another challenge in determining whether the student actually understands the topic after getting all the questions right, but only because they were assisted to do the homework. Thus, teachers may value class work more than home work in assessing learners progress. However, it is important to take into account the risk of overloading students with assignments within a short time, i.e. during the lesson. On of the purposes of having home work assignments is to allow students, especially slow learners, to complete the tasks at their own pace. It is possible that even bright students may fail to get the correct answers during class work not because they dont know how to solve the math problems assigned, but becaus...

Saturday, May 30, 2020

Choosing Essay Topics - Economists

Picking Essay Topics - EconomistsIf you are searching for an approach to upgrade your insight and comprehension of the subject of financial matters, at that point the accompanying will assist you with getting familiar with the numerous themes that you can find out about through a decent financial matters paper subject. You will have the option to additionally improve your resume, compose a persuading book audit, set up a superior research paper, and acquire that activity that you have consistently wanted.First, recall that financial matters isn't the main subject that you should examine. Indeed, there are in excess of seventy different subjects that you can find out about so as to propel your vocation. These incorporate law, political theory, brain research, training, human science, history, writing, unknown dialects, and more.Second, in the event that you don't realize which subject to compose on, you should consider which one you need to seek after so as to turn into an effective a rticle point essayist. For instance, in the event that you need to turn into a teacher or writer, you might need to ensure that you expound on financial aspects and history. The various methods of expounding on financial matters and history will assist you with turning into a progressively effective one.Third, when you have chosen which subject you need to expound on, the time has come to pick a general region that you need to instruct or do inquire about. Attempt to consider what the subject of financial aspects can show you. What is the current financial situation?What do you figure the fate of the present condition of financial matters will be? What are the significant patterns in financial matters? When you have your responses to these inquiries, the time has come to concoct your own answer for these problems.Finally, you should pick the best answer for these issues. Will it be simpler to instruct? Will it be simpler to research?As you can see, you don't have to look extremely f ar for the most moderate exposition subjects that will assist you with exceeding expectations in whatever profession way you pick. You should simply take a gander at the numerous online assets that you can utilize. With these apparatuses, you will have the option to pick the best paper points that will assist you with continueing your instruction, accomplish your objectives, and even land that first occupation that you have consistently needed.

Sunday, May 24, 2020

Essay Topics For College - Essay Topics for College Eye Disorder

Essay Topics For College - Essay Topics for College: Eye DisorderIf you have a question about essay topics for college, it is very likely that you are suffering from my eye disorder. Many people are interested in the topic of eyesight issues and the other problems that come with age, but this does not mean that they are concerned about the readers when writing essays.If you are one of the many people that have poor eyesight, and you have been looking for ways to get the advice and help that you need, there are many options available. The first thing that you should do is to contact your optometrist. Your optometrist will be able to tell you if you are qualified to get prescriptions for glasses or whether it is something that you need to talk to a doctor about.Since your optometrist will be able to help you with the problem, you will want to keep your eye disorder topics in mind when you begin your essay topics for college. The doctor will want to know if you are having problems with your ability to focus on objects that are close up. It could be that your pupil size is getting smaller as you age, causing blurry vision. Your optometrist will be able to examine your eyes and tell you what the right course of action is.One option that many people consider is changing your diet, so they can lessen their risk of eye disorder. What most people do not realize is that they do not necessarily need to change their diets. It is possible that a healthy lifestyle can lead to better eyesight and help you avoid eye disorder.Another option that you may want to consider is testing yourself for a cause of your eye disorder. If you have an eye disorder, you may have issues that are related to the eye as well.If you suffer from an eye disorder, you may want to make an appointment with your doctor and see if you can find out why you have such problems. If you have any questions about your eyesight, your optometrist can give you the information that you need. This information can th en help you decide what type of medication to take, if any, to help you get better eyesight.If you suffer from an eye disorder, you may want to speak to your optometrist about your eyesight, so that you can learn more about what the problem is. The eye care specialist can give you advice and tips about what to do about the problem. You will then be able to find out what kind of treatment you need to help you get better eyesight.Having an eye disorder is something that no one wants to deal with, but it is something that is unfortunately necessary. Before you reach out for any prescription drugs, find out how you can get better eyesight without using any drugs. If you feel that your eyesight is getting worse, speak to your optometrist to find out what the problem is.

Wednesday, May 6, 2020

Maria Montessori And The Intellectual Development Of A Child

‘A tiny sixteen-month-old child toddles off down the garden path. Close behind her follow two adults. She pauses, looks around and says meaningfully: â€Å"Windy.† The adults scribble furiously in their Woolworths notepads.’ Homes all over the world, scenarios like this are repeated in a way to experience every tiny word said by the child, it is almost an achievement and a breakthrough for some parents to hear their child say, ‘mama’ or ‘dad’ for the first time but what is put into this development is what is earned back. Language acquisition is established all around the intellectual development of a child. Considering turn of events, health, education and upbringings, the acquirement of a language when fully acquired allows one to make sense of the world they live in. Maria Montessori (1870-1952) who was one of the most innovative childhood pedagogues of the 20th Century had argued that each and every child has a unique potential for growth and development waiting to be expressed and revealed. Aforesaid potential is best advanced by allowing children to be free to explore and manipulate the surrounding environment. Her concept basically suggested that in hands-on, multi-modality activities, learning fixated on creating mental modes but having adult observation followed by appropriate adult intervention worked better, thus ‘structured’. Notably language, it is the core of the apparatus to be human that is why child’s growth and development in language has received the mostShow MoreRelatedMaria Montessori : Education Of Children And Developed A Clear Concept Of A Plan ned Environment1489 Words   |  6 Pages â€Æ' While Maria Montessori expressed multiple convincing theories regarding the education of children that included ideas such as sensitive periods, the role of independence and a planned environment in the classroom, some theories contradicted each other and in practice. She compiled her beliefs into a Montessori Method that described how to teach young children in a way that fulfilled their full potential. McClure’s magazine recognized Montessori as a â€Å"wonder worker in education† (Tozier, 1911)Read MoreMaria said that the children have an inner force, it gives them the strength and energy to achieve900 Words   |  4 PagesMaria said that the children have an inner force, it gives them the strength and energy to achieve potentially. When you give a child guidance and freedom, they focus mainly on what they need to know. Children have more confidence and they do not need to rely on the teachers. Maria had put optimism and humanism in her teaching. Montessori approach, she made the school beautiful and careful environment for the children. Didactic materials, so she could meet the needs of each child at their level ofRead MoreHow Does the Montessori Environment Facilitate and Encourage the Freedom of the Child?750 Words   |  3 PagesIn a Montessori classroom, a child is free to move about and explore the environment because with activity and movement comes learning. Movement, in fact, contributes not only to the physical, but also to the intellectual potential and spiritual development of the child. The child must have freedom achieved through order and self-discipline. The child in a Montessori environment can learn, discover and be creative. He has the freedom of choice and develops his individual interest. The child learnsRead MoreThe influence of the Absorbent Mind, and the Sensitive Periods on the childs development of movement, language and social skills.1448 Words   |  6 Pagesinfluence of these periods on the child s development of movement, language and social skills. A child in his absorbent mind develops his movement, his language and social skills by soaking knowledge. He takes steps in different sensitive period and repeats his movements, words or social skill actions to improve and to perfect his movement, language and social skills. The Absorbent Mind: Dr. Maria Montessori uses the term Absorbent Mind to describe the child s mental capacity for soaking upRead MoreMontessori : History And Developmental Theory1043 Words   |  5 Pageshead: Maria Montessori Maria Montessori - History and Developmental Theory Kelsie Nesbitt Georgian College Abstract This paper will explore Maria Montessori and her theories on early childhood education. Using information that I find online and through the Introduction to ECE textbook, I will create an organized research report describing how and why Maria Montessori has had such a huge impact on early childhood education today. After furthering my knowledge with research on Maria MontessoriRead MoreMaria Montessori1462 Words   |  6 PagesMaria Montessori Julianne Perry ECE101: Introduction to Early Childhood Education Monica Kelly June 13, 2011 Thesis: Maria Montessori s way of learning is very unique; her theory was for children learn in a natural and parent-supported environment. Outline I. Education of Montessori 1. First woman to receive a Medical Degree in Italy A. Studied psychiatry, education and anthropology. B. Worked, wrote and spoke for children with special needs 2. Many schoolsRead MoreReview of the Montessori Method1375 Words   |  6 Pagesâ€Å"The Montessori Method† Review Paper Lisa Ahlgrim National Louis University Maria Montessori was a visionary woman, passionate about providing quality education to all children. Born in 1870, at a time where few women attended college and were not expected to work in any area other than teaching, Maria grew up determined to become a doctor in spite of society, and even her father’s reservations. She was not accepted into the University of Rome, but with her spirit of perseverance, Maria gainedRead MoreMaria Montessori : An Educational Philosopher967 Words   |  4 PagesMaria Montessori was an educational philosopher acclaimed for her child-centered education method that primarily focused on children’s natural ability to learn information through the stages of development. Because her method was centered around children, Montessori believed that the classroom environment and materials must be designed to foster children’s natural desire to discover information within their environment (Society, 2016; Pendleton, 2015). According to No rthwest (2015), the guidingRead MoreThe Montessori Method: Origins of an Educational Innovation1151 Words   |  5 Pagesï » ¿Maria Montessori Introduction Maria Montessori left a lasting mark on the education system all over the world (Montessori Gutek, 2004). Philosophers consider her as one of the most popular as well as accomplished educator of her time. Many universities and schools today study and utilize her philosophies and techniques. Her life involves a story of a remarkable achievement and perseverance. Maria Montessori considered the concept of teaching children to explore the world through the use of theRead MoreThe Educational Work Of Maria Montessori1349 Words   |  6 PagesMaria Montessori was born on the 31st August 1870 in the town of Chiaravalle, Italy. Maria got her quest for knowledge from her parents who were both well educated. She started her education at a local state school and proceeded onto a technical institute where she intended to pursue a career in engineering. This was unusual at the time as there were barriers that constrained women’s careers, leaving them with fewer options to pursue technica l careers than their male contemporaries. Even after graduating

Tuesday, May 5, 2020

Contraction of Tissue Engineered Oral Mucosa

Question: Describe about the Contraction of Tissue Engineered Oral Mucosa? Answer: 1. Tissue Engineered Oral Mucosa Models An Oral mucosa which is artificially engineered consisting full thickness generally resembles the normal oral mucosa. It consists of several components as identical to the natural element (Barbagli and Lazzeri, 2015). A lamina propria was comprising of the three-dimensional scaffold, which is infiltrated by fibroblasts. These fibroblasts produces extracellular matrix (Heller et al. 2015). This structure can be effectively mimicked by seeding the oral fibroblasts in a biocompatible porous scaffold. This is followed by a long-term culturing protocol in the fibroblast differentiation medium (Bhargava et al. 2011). A researcher might have trouble such as reduced fibroblast infiltration, lack of porosity, shrinkage of scaffold along with rapid biodegradation of scaffold (Amemiya et al. 2015). A Continuous Basement Membrane (CBM) which separates the epithelia with lamina propia is involved in the engineering protocol. The associated basement membrane is characterized by the Transmission Electron Microscope (TEM), which clearly highlights the lamina lucida, anchoring fibers, and the lamina densa (Bucchieri et al 2012). The Immunostaining technique for the basement membrane antigens (e.g., type IV collagen, Laminin, Bullous Pemiphigoid Antigen, Fibronectin and Integrin) are considered quite useful for the characterization method (Cheng and Xie, 2012). A Stratified Squamous Epithelium is associated with the packed keratinocytes which is consist of basement membrane, undergoes migration to the surface of the buccal cavity. This structure can be efficiently imitated by the growth influence of in vitro keratinocytes of the oral cavity at an air and liquid interface within a transparent medium (containing keratinocyte growth factors, including Epidermal Growth Factor- EGF). The significant factors, which need to be highlighted, include the construction of keratinocyte invasion within the connective tissue layer (Bhargava et al. 2011). In order to speak to the difficulties and for the optimization in the construction of oral mucosa with full thickness, several factors need to be considered. This includes the following: i) Scaffolds ii) Cell Source iii) Culture Medium The detailed analysis of each of these structures are highlighted below: i) Scaffolds The scaffold is considered as in an important element of the oral mucosa. It helps to support the cells of associated to the surface. Thereby, choosing the suitable scaffold would be highly recommendable. An appropriate scaffold would include effective biocompatibility, biostability, porosity along with efficient mechanical properties(Amemiya et al. 2015). The scaffolds, which are used in the oral mucosa along with the skin reconstruction techniques, are found to be associated with several distinct categories. These are as follows; The details of each of the structures are mentioned below: a) Fibroblast-populated skin substitutes b)Naturally derived Scaffolds (acellular dermis and the amniotic membrane) c) Collagen-based scaffolds d) Fibrin based materials e) Gelatin based scaffolds f) Hybrid Scaffolds g) Synthetic Scaffolds (polymers) Naturally Derived Scaffolds Acellular Dermis Acellular Cadaveric Dermis under the brand name AlloDermTM is a scaffold, which is generally used for tissue engineering especially in the oral mucosa. It is non-immunogenic which has dual polarity. One side consists of the basal lamina, which is suitable for the epithelial cells. On the other hand, the perfect channels of the vessel are influenced by the fibroblast infiltration (Dickhuth et al. 2015). The De-Epidermalized Dermis (DED) are used for the preparation of epidermal-dermal composites. It is subsequently used for reconstruction of hard palate mucosal epithelium samples. The De-Epidermalized Bovine Tongue Mucosa is used as a substrate for the keratinocyte culture (Amemiya et al. 2015). The De-Epidermalized Dermis is generally prepared from the thickned skin with split texture on removing the epidermis and the dermal fibroblasts. The basic advantages of De-Epidermalized Dermis (DED) are as follows: a) Ability to retain the structural properties (even at low temperature or frozen) b) Lyophilization c) Ability to remain preserved in glycerol solution Collagen-based Scaffolds Pure Collagen Scaffolds Various scientists and researchers have developed the in vitro oral mucosal model by culturing normal keratinocytes on skin collagen isolated from the bovines in gels containing fibroblasts. Further, this set up was co-cultured in reconstruction medium (Barbagli and Lazzeri, 2015). By developing this technique, they have made a well defined mucosal model that is similar to the local tissues. In further research works scientists developed this model and they cultured oral mucosal tissue by using a telopeptide type I mixed with sponge matrix of contracted bovine skin collagen gels (CCG). This model was composed of lamina propia and fibroblasts embedded in CCG and collagen sponge and cell layers of stratified cell layers present in the surface of the lamina propia (Gauvin et al. 2012). The advantage of this model is that it provides a substrate and base for the formation of keratinocyte multilayer (Barbagli and Lazzeri, 2015). The significant finding of this research model was the detec tion of laminin expression between the epithelium tissue and lamina propia. However, expression of type IV collagen and hemodesmosome is not recognized and found during this experiment. Moreover, it was found that higher amount of extracellular matrix (ECM) was synthesized in three dimensional porous scaffold model (Heller et al. 2015). This scaffold model was named after the founder and is known as Moriyamas model. In further research and experiments, Roubhia and Deslauriers carried out another technique in which they mixed bovine skin collagen with the oral fibroblasts of the normal human being and produced engineered lamina propia (Dickhuth et al. 2015). They further seeded oral epithelial cells on this matrix and allowed them to grow and proliferate in an air-liquid interface. However, to track the proliferation rate of the oral epithelial cells the increase in the production of marker Ki-67 and cytokeratins K14, K19, K10 was measured (Barbagli and Lazzeri, 2015). It has been fo und that Keratinocytes interacts by producing laminarin basement proteins and integrins with the fibroblast. Moreover, this experiment also showed that oral mucosa can produce TNF- (tumor necrosis factor alpha), interleukins like IL-1 and IL-8, metalloproteases like gelatinase A and gelatinase B. However, it was found that collagen-based scaffolds have poor mechanical properties and cross linking of collagen tissues results in calcification (Bhargava et al. 2011). i) Cell Source Apart from the Scaffold, the other important factor, which needs to be considered in oral mucosa, is the type and origin of keratinocytes and fibroblasts. The fibroblasts are generally isolated on the primary dermal layer of skin by an oral mucosal biopsy. These tissues are used for early passage associated with the tissue engineering (Lanzaet al. 2011). This is because the extracellular matrix production that provided by the dermal fibroblasts tends to decrease, as the passage number increases. The Keratinocytes are found to be obtained from different sites in an oral cavity (e.g. hard palate). The usual active human keratinocytes need to be used at the early passage. However, the immortalized keratinocytes (e.g. HaCaT cells or TR146 cells) can be efficiently used in the reconstruction of oral mucosal test models in respect to its extended passage (Barbagli and Lazzeri, 2015). On the other hand, the epidermal differentiation associated with the transformed keratinocytes is considere d imperfect as the decisive steps of terminal differentiation does not take place. The tumor cells are considered anomalous and thereby it is not used for any clinical usage (Gil et al. 2015). ii) Culture Medium Frequently used cultural medium associated with the oral mucosa reconstruction is the Dulbeccos Modified Eagle Medium (DMEM)-Hams F-12 Medium (3:1). This is usually supplemented with the Fetal Calf Serum (FCS) along with other elements such as Glutamine, Adenine, Insulin, Epidermal Growth Factor (EGF), Transferrin, Tri-Iodothyronine, Hydrocortisone, Fungizone, Streptomycin, and Penicillin (Heller et al. 2015). Human Oral Mucosa which is formed by tissue engineering, was found to be equivalent to the Serum-free culture medium, was considered as an efficient protocol, associated with the context (Dickhuth et al. 2015). The elimination of the usage of serum and thereby the irradiation of mouse fibroblast feeder layers are associated with this memorandum, which minimized the exposure of human grafts recipients. This is related to the effect of the xenogeneic DNA which is present in the irradiates mouse 3T3 cells and the serum. It can be analyzed that the same techniques were followed for the human conjunctiva along with the oral mucosa corresponding (Cheng and Xie, 2012). The demonstration was based on the fact that the keratinocytes of oral mucosa and its perfusion is associated with the medium. Moreover, it is observed that it enhances the viability of the cell along with the proliferation while cultured in porous three-dimensional (3D) matrix of collagen-GAG. This provides a cross-linkage between the glutaraldehyde structures associated with the model (Brauchle and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, 2013). Contraction of the tissue highlights towards the movement of the muscles, which is mainly regulated by several co-factors. Myofibroblast plays a cruicial role in the contraction mechanism. It helps to decrease the size of the muscle by gripping towards the edges of the muscles. This is mostly present within the smooth muscle cells. Both the effects of cell proliferation along with apoptosis is monitored by the phenomenon of contraction, which is effectively monitored in this experiment (Osman et al 2015). 2. Spectral Profile of Controlled and Drug Induced Model Proper monitoring of the tissue-engineered constructs is considered as an important component for the successful implementation of any tissue engineered techniques. To demonstrate and monitor the visible biochemical changes within the collagen cross-links of both controlled and drug-induced tissue engineered model, Raman spectroscopy is primarily used (Brauchle and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, 2013). Raman spectroscopy provides a simple and rapid method for monitoring the quality of the tissue-engineered components and thus contains information regarding the biochemical properties of the cells and tissues (Gauvin et al. 2012). The application of the infrared Raman spectroscopy may be demonstrated by monitoring the tissue engineered constructs, which are stressed by high temperature and are exposed to a high concentration of calcium (much higher than the normal value) (Gauvin et al. 2012). Thus, analyzing the Raman spectra helps in understanding the correlation of the CH2 deformatio n ratio about the phenylalanine ring. The histology and the morphological changes of the tissue-engineered mucosa provide the data regarding the concentration of the glucose consumption that helps in revealing information regarding the specific and sensitive changes in the secondary structure of the protein. Tissue-engineered oral mucosa cells have been treated with a particular antibiotic rapamycin, which helps in understanding the proliferation and capacity of the cells (Cheng and Xie, 2012). A separate set of control has also been kept for making a clear distinction between the control and the rapamycin treated tissue engineered cells (Cheng and Xie, 2012). Figure 1.Raman spectroscopy showing the change in wavelength Introduction of a sugar molecule (for example mannitol, sorbitol, and glucose) during the process of tissue engineering has been analyzed by implementing the method of FTIR (Fourier Transform Infrared Spectroscopy). The studies helps in understanding the interaction between the chitostana and the gelatin fibres present which helps in the formation of the ionic and covalent bonds. The bonding helps in making strong collagen fibres, which helped in revealing the structure of the collagen fibres (Cheng and Xie, 2012). Thus spectral analysis by FTIR helps in understanding and revealing the nature and bonding of the collagen fibres during the process of tissue engineering (Votteler et al. 2012). Tissue engineering is considered as one of the most dynamic and important method for assisting tissue engineering of oral mucosa. The analysis by Raman spectra also reveals the data in response to the present of an antibiotic. Thus, it can be stated that in presence of an antibiotic rapamycin ther e is a change little increase in the wavelength in presence of an antibiotic (Brauchle and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, 2013). The Raman spectroscopy has been supported by the FTIR analysis, which helps in understanding regarding the various surface properties associated with the introduction of the antibiotic. The FTIR analysis also helps in understanding regarding the change in wave number in accordance with the spectral data produced and thus helps in facilitating the proper tissue engineering techniques in terms of oral cell mucosa (Gauvin et al. 2012). This also helps to assess the various numbers of biochemical changes produced in normal skin caused by the tissue engineered oral cell mucosa. Cluster analysis helps in the evaluation of the vibration modes, which is associated in understanding and revealing the structure of the associated protein, which indicates changes in the secondary conformation of the various changes in the tissue. FTIR spectra are primarily acquired in aspect of three experimental configuration which includes transmission, reflection-absorption and total reflection which includes the fraction of total attenuated radiation (ATR). The spectral analysis also helps in understanding of the various anatompophological characteristics of both the control and the antibiotic treated tissue cells (Heller et al. 2015). Thus, the present change in the wavelength and wave numbers of a particular tissue represents a valuable data for organ and tissue reconstruction (Barbagli and Lazzeri, 2015). The control has been subjected to two different kinds of stress, which includes thermal changes and increase in the concentration of the calcium. The changes helped in understanding regarding the various changes in the value of the wavelength in terms of the data obtained with the help of Raman spectroscopy and FTIR. The CH2 band ratios also helped in revealing the ratio of the phenylalanine bonds in terms of thermal stress and higher concentration of the calcium molecules. Thus, because of small variation in execution of the productive protocol, the specific variability in the tissue engineered cells can be understood (Cheng and Xie, 2012). Thus, both Raman and FTIR provide effective data in understanding the overall change in the wavelength produced in response to the presence of antibiotic rapamycin. The antibiotic rapamycin thus disrupts the various bonds and thereby leads to an overall increase in the wavelength of the resulting spectroscopy analysis (Dickhuth et al. 2015). 3. Monitoring the effects of B-APN The effect of APN on a drug induced model is described in the graph presented below: It can be analyzed from this graphical interpretation that there is a considerable increase in the slope. The activity of absorbance doubles itself within 60 minutes, which highlights towards the higher efficiency of the graphical analysis (Heller et al. 2015). 4. Constructing a Chemo-metric Modeling system Chemo-metrics would be an effective parameter related to the article. It reflects towards the usage of statistical and mathematical protocol in order to improve the understanding of chemical information and thereby correlate the quality parameters associated to it. The patterns of the data are modeled, which are routinely applied to the future data to predict the same quality parameters (Cheng and Xie, 2012). The result attained from the chemo-metric approach focuses towards gaining efficiencies in assessing the product quality. More efficient laboratory practices are highlighted through this quality control system. Hence, for constructing the chemo-metric modeling system for analyzing the spectral data, an appropriate instrumentation along with an effective and interconnectivity software (for interpreting the patterns of the obtained data) needs to be implemented on the primary basis (Bhargava et al. 2011). Chemo-metrics provides the spectroscopists the various ways to solve the calibration issues, which are interrelated to the spectral data. It is recommendable that the construction of chemo-metric modeling system should be monitored is such a way that helps to enhance the developmental methods significantly and thereby make effective routine use of the statistical models for data analysis(Amemiya et al. 2015). Implementing Unscrambler for analyzing the spectroscopic data, modeling, classifying the data analyzed and thereby predicting to meet the protocol of quality assurance and monitoring would be an effective step related to the context. The researcher would be requiring other equipments for constructing an effective chemo-metric system which are stated below: A Spectroscopic data pre processing unit, which would help to reduce and thereby rectify the interferences such as overlapped bands, scattering, baseline drifts and the path length variations is considered as the primary equipment associated to the research study (Gauvin et al. 2012). Recommending Multiplicative Scatter Correction (MSC) pretreatment device would be effective as it would focus towards building a reliable relationship between the cell structure content present within the tissue engineered oral mucosa and the spectral data for scatter correction (Brauchle and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, 2013). Establishing an effective Calibration and Diagnostic means of sample from the tissue engineered oral mucosa would be effective for the system. Variable selection of the sample would be helpful in deducing an effective result calculation and thereby rebuilding representative and reliable model (Gil et al. 2015). Model integration along with Model Validation would be helpful in develop the rigorous prediction system. Considerable it would be helpful in measuring the Quality Control (QC) and formulating the relative time product quality and protocol monitoring (Cheng and Xie, 2012). Apart from these requirements, the spectroscopists would be requiring the following chemo-metric software package in order to deduce the data associated to the context. This includes the following: Principal Component Analysis (PCA) SIMCA and PLS-DA Classification Regression (PLS, PCR, MLR, 3-way PLS) and Prediction (Heller et al. 2015) After gathering all the equipments along with the software package, the basic data analysis process is carried out in a systematic order. Figure: Flowchart representing the protocol for Chemo-metric System (Gil et al. 2015) Data input is considered as the most overlooked stage associated to the protocol. This is the main crucial stage in the entire instrumentation (Gauvin et al. 2012). The data, which is analyzed, is efficiently transferred into the software device. The proprietary collection software converts this protocol in a complex manner. The outliers are removed subsequently, which is considered as a delicate procedure. This is followed by a Grubbs test, which mainly helps to detect the outliers. The false outliers, which are present at the extreme point f the system and thereby appear infrequently within the data are subsequently removed (Amemiya et al. 2015). On the other hand, the true outliers (samples and variables which are statistically different from one another) are effectively removed (Barbagli and Lazzeri, 2015). The next stage involves the protocol of Preprocessing. The main goal associated to the preprocessing stage involves the removal of variation within the data, which does not pertain to the analytical information (Brauchle and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, 2013). The typical preprocessing methods, which can be analyzed for evaluating the cell lines of oral mucosa, would include the following: Baseline Correction Mean Centering Normalization Orthogonal Signal Correction Multiplicative Scatter Correction Savitsky-Golay Derivatisation The output, which is attained from this experimental setup, is mainly classified into two types, i.e. Qualitative and Quantitative segments. The Qualitative model would mainly highlight the classified models, effects of classification and the evidences behind classification error. On the other hand, the Quantitative segment would focus towards the prediction models and the involvement of RMSEC and RMSEP (Bhargava et al. 2011). References Amemiya, T., Nakamura, T., Yamamoto, T., Kinoshita, S. and Kanamura, N., 2015. Autologous Transplantation of Oral Mucosal Epithelial Cell Sheets Cultured on an Amniotic Membrane Substrate for Intraoral Mucosal Defects. Barbagli, G. and Lazzeri, M., 2015. Clinical experience with urethral reconstruction using tissue-engineered oral mucosa: a quiet revolution.European urology,68(6), pp.917-918. Bhargava, S., Patterson, J.M., Inman, R.D., MacNeil, S. and Chapple, C.R., 2011. Tissue-engineered buccal mucosa urethroplastyclinical outcomes.European urology,53(6), pp.1263-1271. Brauchle, E. and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, K., 2013. Raman spectroscopy in biomedicinenonà ¢Ã¢â€š ¬Ã‚ invasive in vitro analysis of cells and extracellular matrix components in tissues.Biotechnology journal,8(3), pp.288-297. Bucchieri, F., Fucarino, A., Marino Gammazza, A., Pitruzzella, A., Marciano, V., Paderni, C., De Caro, V., Gabriella Siragusa, M., Lo Muzio, L., T Holgate, S. and E Davies, D., 2012. Medium-term culture of normal human oral mucosa: a novel three-dimensional model to study the effectiveness of drugs administration.Current pharmaceutical design,18(34), pp.5421-5430. Cheng, J.X. and Xie, X.S. eds., 2012.Coherent Raman scattering microscopy. CRC press. Chung, B.G., Lee, K.H., Khademhosseini, A. and Lee, S.H., 2012. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.Lab on a Chip,12(1), pp.45-59. Dickhuth, J., Koerdt, S., Kriegebaum, U., Linz, C., Mller-Richter, U.D., Ristow, O., Kbler, A.C. and Reuther, T., 2015. In vitro study on proliferation kinetics of oral mucosal keratinocytes.Oral surgery, oral medicine, oral pathology and oral radiology,120(4), pp.429-435. Gauvin, R., Chen, Y.C., Lee, J.W., Soman, P., Zorlutuna, P., Nichol, J.W., Bae, H., Chen, S. and Khademhosseini, A., 2012. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography.Biomaterials,33(15), pp.3824-3834. Gil, R.S., Pags, C.M., Dez, E.G., Llames, S., Fuertes, A.F. and Vilagran, J.L., 2015. Tissue-Engineered Oral Mucosa Grafts for Intraoral Lining Reconstruction of the Maxilla and Mandible With a Fibula Flap.Journal of Oral and Maxillofacial Surgery,73(1), pp.195-e1. Heller, M., Frerick-Ochs, E.V., Bauer, H.K., Schiegnitz, E., Flesch, D., Brieger, J., Stein, R., Al-Nawas, B., Brochhausen, C., Throff, J.W. and Unger, R.E., 2015. Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts.Biomaterials,77, pp.207-215. Kim, C.Y., Woo, Y.J., Lee, S.Y. and Yoon, J.S., 2014. Postoperative Outcomes of Anophthalmic Socket Reconstruction Using an Autologous Buccal Mucosa Graft.Journal of Craniofacial Surgery,25(4), pp.1171-1174. Kim, R.Y., Fasi, A.C. and Feinberg, S.E., 2014. Soft tissue engineering in craniomaxillofacial surgery.Annals of maxillofacial surgery,4(1), p.4. Kinikoglu, B., Damour, O. and Hasirci, V., 2015. Tissue engineering of oral mucosa: a shared concept with skin.Journal of Artificial Organs,18(1), pp.8-19. Lanza, R., Langer, R. and Vacanti, J.P. eds., 2011.Principles of tissue engineering. Academic press. Lu, Q., Al-Sheikh, O., Elisseeff, J.H. and Grant, M.P., 2015. Biomaterials and tissue engineering strategies for conjunctival reconstruction and dry eye treatment.Middle East African journal of ophthalmology,22(4), p.428. Lv, X.G., Feng, C., Fu, Q., Xie, H., Wang, Y., Huang, J.W., Xie, M.K., Atala, A., Xu, Y.M. and Zhao, W.X., 2015. Comparative study of different seeding methods based on a multilayer SIS scaffold: Which is the optimal procedure for urethral tissue engineering?.Journal of Biomedical Materials Research Part B: Applied Biomaterials. MacNeil, S., 2012. Biomaterials for tissue engineering of skin.Materials today,11(5), pp.26-35. MacNeil, S., Shepherd, J. and Smith, L., 2011. Production of tissue-engineered skin and oral mucosa for clinical and experimental use. In3D cell culture(pp. 129-153). Humana Press. Moharamzadeh, K., Brook, I.M., Van Noort, R., Scutt, A.M. and Thornhill, M.H., 2007. Tissue-engineered oral mucosa: a review of the scientific literature.Journal of dental research,86(2), pp.115-124. Moharamzadeh, K., Colley, H., Murdoch, C., Hearnden, V., Chai, W.L., Brook, I.M., Thornhill, M.H. and MacNeil, S., 2012. Tissue-engineered oral mucosa.Journal of dental research,91(7), pp.642-650. Neel, E.A.A., Chrzanowski, W., Salih, V.M., Kim, H.W. and Knowles, J.C., 2014. Tissue engineering in dentistry.Journal of dentistry,42(8), pp.915-928. Nunes, l.f.m., de nazar alves de oliveira, c.a.m.i.l.a., dos santos, e.b. and MESQUITA, R.A., 2014. Epidemiology of the Oral Mucosa Lesion in Elderly Patients.Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology,117(2), p.e205. Oie, Y., Hayashi, R., Takagi, R., Yamato, M., Takayanagi, H., Tano, Y. and Nishida, K., 2010. A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction.British Journal of Ophthalmology,94(9), pp.1244-1250. Osman, N.I., Hillary, C., Bullock, A.J., MacNeil, S. and Chapple, C.R., 2015. Tissue engineered buccal mucosa for urethroplasty: Progress and future directions.Advanced drug delivery reviews,82, pp.69-76. Osman, N.I., Hillary, C., Bullock, A.J., MacNeil, S. and Chapple, C.R., 2015. Tissue engineered buccal mucosa for urethroplasty: Progress and future directions.Advanced drug delivery reviews,82, pp.69-76. Park, S.W., Lee, H., Lee, H.J., Chung, H., Park, J.C., Shin, S.K., Lee, S.K. and Lee, Y.C., 2014. Esophageal mucosal mast cell infiltration and changes in segmental smooth muscle contraction in noncardiac chest pain.Diseases of the Esophagus. Patterson, J.M., Bullock, A.J., MacNeil, S. and Chapple, C.R., 2011. Methods to reduce the contraction of tissue-engineered buccal mucosa for use in substitution urethroplasty.European urology,60(4), pp.856-861. Payne, K.F., Balasundaram, I., Deb, S., Di Silvio, L. and Fan, K.F., 2014. Tissue engineering technology and its possible applications in oral and maxillofacial surgery.British Journal of Oral and Maxillofacial Surgery,52(1), pp.7-15. Sheth, R., Neale, M.H., Shortt, A.J., Massie, I., Vernon, A.J. and Daniels, J.T., 2014. Culture and characterization of oral mucosal epithelial cells on a fibrin gel for ocular surface reconstruction.Current eye research, (0), pp.1-11. Sheth, R., Neale, M.H., Shortt, A.J., Massie, I., Vernon, A.J. and Daniels, J.T., 2014. Culture and characterization of oral mucosal epithelial cells on a fibrin gel for ocular surface reconstruction.Current eye research, (0), pp.1-11. Visan, I., 2015. Oral mucosa Langerhans cells.Nature immunology,16(9), pp.906-906. Votteler, M., Carvajal Berrio, D.A., Pudlas, M., Walles, H., Stock, U.A. and Schenkeà ¢Ã¢â€š ¬Ã‚ Layland, K., 2012. Raman spectroscopy for the nonà ¢Ã¢â€š ¬Ã‚ contact and nonà ¢Ã¢â€š ¬Ã‚ destructive monitoring of collagen damage within tissues.Journal of biophotonics,5(1), pp.47-56. Watanabe, E., Yamato, M., Shiroyanagi, Y., Tanabe, K. and Okano, T., 2011. Bladder augmentation using tissue-engineered autologous oral mucosal epithelial cell sheets grafted on demucosalized gastric flaps.Transplantation,91(7), pp.700-706. Winterroth, F., Kato, H., Kuo, S., Feinberg, S.E., Hollister, S.J., Fowlkes, J.B. and Hollman, K.W., 2014. High-Frequency Ultrasonic Imaging of Growth and Development in Manufactured Engineered Oral Mucosal Tissue Surfaces.Ultrasound in medicine biology,40(9), pp.2244-2251. Xie, M., Xu, Y., Song, L., Wang, J., Lv, X. and Zhang, Y., 2014. Tissue-engineered buccal mucosa using silk fibroin matrices for urethral reconstruction in a canine model.Journal of Surgical Research,188(1), pp.1-7.